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For those interested, the examples here demonstrate three different ways to per-
form Wald- and F-tests in R. It is perfectly fine to use a package for this, and in
particular, the function linearHypothesis() from the car package. In some ap-
plications, you may need to work with matrices in R; these examples illustrate how
this would be done.

First, we read in the data:

suppressPackageStartupMessages({
library(car)
library(data.table)

})

# Set working directory to wherever you have the dataset
setwd('G:/My Drive/opinnot/2024-2025/Econometrics I/Tutorials/Tutorial-
I/')

# Read the data
NERLOVE116 <- fread('NERLOVE116.TXT')
setnames(NERLOVE116, c('totalCost', 'output',

'labourPrice', 'fuelPrice', 'capitalPrice'))

# Transform variables to logs (hint: a mistake has been left here)
transToLogs <- c('output', 'labourPrice', 'capitalPrice')

# The following is a data.table specific method for transforming variables.
NERLOVE116[,(transToLogs) := lapply(.SD,log),.SDcols=transToLogs]

Next, suppose we are given the model

y = Xβ,X =
[
1 x2 x2 x3 x4 x5

]
, β =

[
β1 β2 β3 β4 β5

]T
, (1)

with x2 standing for total output and x3 through x5 for prices of labour, fuel and
capital respectively.

The null hypothesis is given as

β3 + β4 + β5 = 1. (2)

The first thing to do is to estimate the model. We can do this as usual with lm.
(Of course, one may also do this with R primitives.)
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https://www.rdocumentation.org/packages/car/versions/3.1-3/topics/linearHypothesis


Lecture slides (Week 1 / Testing hypotheses under the normality assumption /
slide 7 on ”Test of J linear restrictions”) tell us that the restrictions can be written
in a matrix form. This form has not been developed to make life more complicated
for students, but because they can be used to write an estimator that has a known
distribution under the null (see further below). The restrictions are:

Rβ = q

Each row of the left-hand side matrices should match the left-hand side of the
restriction equations, and similarly for the right-hand side. β is specified by the
model (1), and restrictions were given by (2).

As long as you remember your matrix multiplication, you should be able to
simply see the type of R matrix we need:

R =

[
0︸︷︷︸

multiplies β1

0︸︷︷︸
multiplies β2

1︸︷︷︸
multiplies β3

1︸︷︷︸
multiplies β4

1︸︷︷︸
multiplies β5

]
,q =

[
1
]
,

where β1 and β5 did not appear in (2); to prevent them from appearing in the
restriction equations, multiply them by zero.

Next, we are told that the F -test statistic has the structure

F =
(Rb− q)T

(
R(XTX)RT

)−1
(Rb− q)

Js2
, (3)

where J is the number of restrictions and s2 is the estimator for the error term’s
variance, defined in the book on page 18 as the bias-adjusted sum of squared resid-
uals:

s2 =
1

N −K

N∑
i=1

e2i , (4)

where N is the number of observations and K is the number of regressors including
the constant. Under the null hypothesis (model assumptions plus linear restriction),
F has a F -distribution with J and N − K degrees of freedom. Note that the
asymptotic Wald-statistic also has an F -form, which asymptotically follows a FJ,∞
distribution as N → ∞.

Let’s calculate the statistic ourselves in R.

# Create the restriction matrix R
Rmatrix <- as.matrix(

data.table(
'(Intercept)' = 0L, 'output' = 0L, 'labourPrice' = 1L,
'fuelPrice' = 1L, 'capitalPrice' = 1L))

# Create the b-estimate vector. coef() returns the point estimates. By default,
# as.matrix turns a vector of values into an explicit row vector.
bvector <- as.matrix(coef(modelResults))
# The RHS of Rb = q
qvector <- as.matrix(1L)
# The X matrix can be grabbed from the model with the following
# function (it can also be constructed directly from the data).
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Xmatrix <- model.matrix(modelResults)
# (X'X)^(-1) does the following:
# Multiply by transpose. t() does a transpose, while matrix multiplication
# is done by %*%. (Do not use A*B for matrix multiplication; it multiplies
# each element of A by the corresponding element of B!)
XtX <- t(Xmatrix) %*% Xmatrix
# Invert the multiplication result. This is done (for example) by
# solve():
XtXinverse <- solve(XtX)
# s (estimate for the distribution's sigma) is available as:
sigmaEstimate <- summary(modelResults)$sigma
# We have one restriction equation
JNofRestrictions <- 1L

# Number of coefficients
KNoOfCoefficients <- length(coef(modelResults))
# Number of observations
NNoOfObservations <- NERLOVE116[,.N]

Fstatistic <-
t(Rmatrix %*% bvector - qvector) %*%
solve( Rmatrix %*% XtXinverse %*% t(Rmatrix) ) %*%
(Rmatrix %*% bvector - qvector)/(JNofRestrictions * sigmaEstimate^2)

# The result is a 1x1 matrix, which we equate with a scalar
Fstatistic <- Fstatistic[1,1]

# pf gives the distribution function for the F-distribution
# lower.tail = F means we ask for P(Fvariable > Fstatistic) rather than
# P(Fvariable < Fstatistic), the default.
FTestResult <-

pf(Fstatistic,
df1 = JNofRestrictions,
df2 = NNoOfObservations - KNoOfCoefficients,
lower.tail = F)

# The asymptotic version (the Wald test) may be valid even if the exact
# small-sample counterpart using F-distribution is not. In this case, the
# F-statistic is the same, but the distribution used is different.
waldTestResult <-

pchisq(Fstatistic, df = JNofRestrictions, lower.tail = F)

# Note that the asymptotic F-distribution is different
FAsymptoticTestResult <-

pf(Fstatistic,
df1 = JNofRestrictions,
df2 = Inf,
lower.tail = F)

FTestResult - FAsymptoticTestResult
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## [1] 0.002671

We can actually see the restriction matrices also by performing linearHypothesis
with the verbose option.

FTestResultCheck <-
linearHypothesis(modelResults,

'labourPrice + fuelPrice + capitalPrice = 1', verbose = T,
test = 'F')

##
## Hypothesis matrix:
## (Intercept) output labourPrice
## labourPrice + fuelPrice + capitalPrice = 1 0 0 1
## fuelPrice capitalPrice
## labourPrice + fuelPrice + capitalPrice = 1 1 1
##
## Right-hand-side vector:
## *rhs*
## 1
##
## Estimated linear function (hypothesis.matrix %*% coef - rhs)
## labourPrice + fuelPrice + capitalPrice = 1
## 26.4
##
##
## Estimated variance of linear function
## [1] 424

# The F-statistics match
all.equal( FTestResultCheck$F[2], Fstatistic )

## [1] TRUE

# The p-values match
all.equal( FTestResultCheck$`Pr(>F)`[2], FTestResult )

## [1] TRUE

waldTestResultCheck <-
linearHypothesis(modelResults,

'labourPrice + fuelPrice + capitalPrice = 1', verbose = T,
test = 'Chisq')

##
## Hypothesis matrix:
## (Intercept) output labourPrice
## labourPrice + fuelPrice + capitalPrice = 1 0 0 1
## fuelPrice capitalPrice
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## labourPrice + fuelPrice + capitalPrice = 1 1 1
##
## Right-hand-side vector:
## *rhs*
## 1
##
## Estimated linear function (hypothesis.matrix %*% coef - rhs)
## labourPrice + fuelPrice + capitalPrice = 1
## 26.4
##
##
## Estimated variance of linear function
## [1] 424

# The F-statistics match
all.equal( waldTestResultCheck$F[2], Fstatistic )

## [1] "target is NULL, current is numeric"

# The p-values match
all.equal( waldTestResultCheck$`Pr(>Chisq)`[2], waldTestResult )

## [1] TRUE

The lecture slides and the textbook (p. 27) both mention that you can also
estimate a restricted model, and compare it to the unrestricted model, to get F-
statistics:

F =
(S0 − S1)/J

S1/(N −K)
, (5)

where S0 and S1 are the sums of squared residuals of the restricted (null hypothesis)
model and unrestricted model. How does this work?

Note that (2) can be plugged in the model equation (1) as follows:

β3 + β4 + β5 = 1 ⇒ β3 = 1− β4 − β5 ⇒
yi = β1 + β2x2i + (1− β4 − β5)x3i + β4x4i + β5x5i ⇔

yi − x3,i = β1 + β2x2,i + β4(x3i − x4i) + β5(x3i − x5i),

and in fact each applicable restriction equation will allow you to delete coefficients
needed to be estimated like this.

To do this in R:

# Use the I(x1 - x2) syntax to use the difference x1 - x2 as a variable
# Simply typing x1 - x2 inside a formula without I() adds the variable x1 and
# silently removes x1.
restrictedResults <- lm(

I(totalCost - labourPrice) ~
output +
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I(fuelPrice - labourPrice) +
I(capitalPrice - labourPrice),

data = NERLOVE116)
S_0 <- sum(restrictedResults$residuals^2)
S_1 <- sum(modelResults$residuals^2)
FstatisticCheck <-
((S_0 - S_1)/JNofRestrictions)/
(S_1/(NNoOfObservations - KNoOfCoefficients))

all.equal( FstatisticCheck, Fstatistic )

## [1] TRUE

Note that you can also calculate residuals as follows (no need to go through
summary.lm()):

sigmaEstimateCheck <- sqrt(sum(modelResults$residuals^2)/
(NNoOfObservations - KNoOfCoefficients))

all.equal(sigmaEstimateCheck, sigmaEstimate)

## [1] TRUE
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