
ECOM-G314 Econometrics 1
Homework Assignment 4

This version of the assignment includes some additional links to the course material to help
you find where a particular topic is being discussed. It should otherwise be identical to the
original assignment.

1. (Adapted from Verbeek, Exercise 6.1) Consider the following linear regression model [35%]

yi = β1 + β2xi + εi.

We have sample of N independent observations, and assume that the error term εi ∼
NID(0, σ2) and independent of all xi. The density function of yi (given xi) is

f(yi|xi; β, σ
2) =

1√
2πσ2

exp

[
−1

2

(yi − β1 − β2xi)
2

σ2

]
(a) Give an expression for the log-likelihood contribution of observation i, logLi(β, σ

2).
Explain why the likelihood function of the entire sample is given by

logL(β, σ2) =
N∑
i=1

logLi(β, σ
2).

Tips: The definition of independence (see e.g. B.4 in the textbook) will be helpful. Recall
the basic properties of the logarithm (can you write log(a · b) as a sum?).

(b) Determine the expressions for the two elements in ∂ logLi(β, σ
2)/∂β, where β =

(β1, β2)
′, and show that both have expectation zero for the true parameter values.

Tips: Note that (differentiable) functions of several variables can simply be differentiated
component-wise. After differentiation, solve for εi from the model. Use the expectation of
εi, and independence and its implications for expectations.

(c) Derive an expression for ∂ logLi(β, σ
2)/∂σ2 and show that it also has expectation

zero for the true parameter values.

Tips: As with (b).

(d) Show that ∂2 logLi(β, σ
2)/∂β∂σ2 = ∂2 logLi(β, σ

2)/∂σ2∂β, and show that it has
expectation zero. What are the implications of this for the asymptotic covariance
matrix of the ML estimator (β̂1, β̂2, σ̂

2)′?

1

https://helka.helsinki.fi/permalink/358UOH_INST/1rnip4l/alma9930875093506253


Tips: it may be useful to express both the partial derivatives in b) in matrix form. You can
refer to the Schwarz-Clairaut theorem (differentiation order does not matter, Dx1Dx2f =

Dx2Dx1f) if you don’t want to differentiate the same things twice. Textbook pp. 192–193
and slide 7 in slides ”Maximum likelihood estimation” will be helpful for the asymptotic
properties.

(e) Present two ways to estimate the asymptotic covariance matrix of (β̂1, β̂2)
′ and

compare the two covariance matrix estimators.

Tips: read either the slides on ”Maximum likelihood estimation” or the book chapter 6.1.2
carefully. For the comparison, consider whether there any similarities and differences be-
tween the estimators, either in limited samples or asymptotically.

2. (Verbeek, Exercise 6.1d) Consider the following linear regression model [15%]

yi = β1 + β2xi + εi.

We have sample of N independent observations, and assume that the error term εi ∼
NID(0, σ2) and independent of all xi. Suppose xi is a dummy variable equal to 1 for
the first N1 observations and equal to 0 for i = N1 + 1, . . . , N . Derive the first-order
conditions for the ML estimator. Show that the maximum likelihood estimators of β1

and β2 are

β̂1 =
1

N −N1

N∑
i=N1+1

yi and β̂2 =
1

N1

N1∑
i=1

yi − β̂1,

respectively. What is the interpretation of these two estimators? What is the inter-
pretation of the true parameter values β1 and β2?

Tips: you may find it useful to think about what is the sum of dummies over N observations. For
interpretation of the values, it may be useful to think about conditional expectations, and how
we interpret a dummy variable’s coefficient in a regression setting.

3. Consider maximum likelihood estimation of the linear regression model [20%]

yi = x′
iβ + εi,

where εi ∼ NID(0, σ2), discussed in the video lecture.

(a) Show that

si(β, σ
2) =

(
∂ logLi(β,σ

2)
∂β

∂ logLi(β,σ
2)

∂σ2

)
=

( εixi

σ2

− 1
2σ2 +

1
2

ε2i
σ4

)
.

Tips: For the definition of the score vector (the gradient of the log-likelihood function), see
slide 7 on ”Maximum likelihood estimation” or chapter 6.1.2 in the textbook.
Recall that for each observation i, xi is typically a vector of regressors (not a scalar).
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(b) Show that

si(β, σ
2)si(β, σ

2)′ =

(
ε2i xix

′
i

σ4 − εixi

2σ4 +
ε3i xi

2σ6

− εix
′
i

2σ4 +
ε3i x

′
i

2σ6
1

4σ4 − 2ε2i
4σ6 +

ε4i
4σ8

)
.

Tips: Can you get the results through a straightforward matrix multiplication?

(c) Show that conditional on xi

Ii(β, σ
2) = E[si(β, σ

2)si(β, σ
2)′] =

(
1
σ2xix

′
i 0

0 1
2σ4

)
.

Tips: Expectation and variance of εi, plus independence.

You may take as given that a for random variable distributed as NID(0, σ2), the third
moment is 0 and the fourth moment is 3σ4.

4. Consider the simple linear regression model [30%]

yi = β1 + β2xi + εi

Let zi be an independently normally distributed random variable with mean zero and
variance unity (zi ∼ NID(0, 1)), while xi = δzi+ηi, where ηi ∼ NID(0, 1). Moreover,
the error term εi = ρηi.

(a) Show that cov(xi, εi) = ρ. Under which conditions is the regressor xi endogenous?

Tips: independence and its implications for expectations.

(b) Show that cov(zi.εi) = 0 and cov(zi, xi) = δ. Under which conditions is zi a valid
instrument for xi?

(c) Let β1 = 0.0, β2 = 1.0 and ρ = 0.99. Consider for four values of δ, δ = 0, δ = 0.1,
δ = 0.5 and δ = 1.0. For each δ, generate S = 1000 samples of size N = 100 from
the regression model, and for each generated sample, compute the IV estimate of
β2 and the t-test statistic for H0 : β2 = 1.0 against H1 : β2 6= 1.0.
Because 1.0 is the true value of β2, H0 should be rejected in 5% of the replications
in the t-test conducted at the 5% level of significance (the nominal size of the
test). Compute the rejection rate of the test, i.e., find the proportion of the
replications where the absolute value of the t-test statistic exceeds the critical
value (1.96). How does the rejection rate and the distribution of the estimator
vary with δ? [Hint: If the model is estimated using the ivreg() function of
the ivreg package in R and the result is stored in iv1, the IV estimate of β2

is obtained as coef(iv1)[2] and the covariance matrix estimator of the OLS
estimator as vcov(iv1).]
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(d) According to the rule of thumb discussed in the video lecture, a weak instrument
problem is unlikely if the first-stage F -statistic of the test of the significance of
the coefficient of zi exceeds 10 in the linear regression of xi on a constant and
zi. Repeat (c), but compute the proportion of replications where the rule of
thumb suggests that zi is a weak instrument for xi. How well does the rule of
thumb seem to work in detecting the weak instrument problem according to you
simulations? [Hint: If the model is estimated using the ivreg() function of the
ivreg package in R and the result is stored in iv1, the first-stage F -statistic is
obtained as summary(iv1)$diagnostics[7].]

(e) Repeat (c) in the case of two instruments: zi1 ∼ NID(0, 1), zi2 ∼ NID(0, 1),
and xi = δzi1 +0 · zi2 + ηi. Compare the results to those obtained in (c) with one
instrument.

(f) Repeat (e), but instead of the t-test, assess the performance of the test of over-
identifying restrictions. In other words, compute the proportion of the replications
where the p-value of the test of over-identifying restrictions does not exceed 5%.
[Hint: If the model is estimated using the ivreg() function of the ivreg package
in R and the result is stored in iv1, summary(iv1)$diagnostics[12] gives the
p-value of the test of over-identifying restricions.]
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