ECOM-G314 Econometrics 1 Homework Assignment 4

This homework assignment will be discussed in the exercise session on Wednesday 13 December (groups at 10.15 am and 12.15 pm) in seminar room 3-4 at Economicum. Please submit your solution by 9.45 a.m. on Wednesday 13 December.

Peer review and self-assessment should be done by Friday 15 December at 6 p.m. at the latest. Please note that the peer review and self-assessment are compulsory, and a prerequisite for gaining points from your submission. Kindly also note that the peer review is earlier than usual, on Friday instead of Monday.
The last regular tutorial will be held on Monday 4 December at 2.15pm in the Economicum lecture hall. There is also an extra tutorial session on Friday 8 December at 2.15 pm in seminar room 3-4 at Economicum. You can ask the TA for help with the the homework assignments and discuss the assignments with other students. If you have any questions, please contact the TA via email at heikki.korpela@helsinki.fi.
The share of each exercise of the maximum number of points from the assignment is given in brackets.
Please return your submission in Moodle as one PDF file. It is not strictly necessary to return the code used, but if there are errors in your results, the code may be helpful in deciding whether you've made a fundamental or a minor mistake.
The peer review is anonymous. For this reason, please do not include your name or student ID in your submission, in the filename or the file description.

1. (Adapted from Verbeek, Exercise 6.1) Consider the following linear regression model

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+\varepsilon_{i} .
$$

We have sample of N independent observations, and assume that the error term $\varepsilon_{i} \sim$ $N I D\left(0, \sigma^{2}\right)$ and independent of all x_{i}. The density function of $y_{i}\left(\right.$ given $\left.x_{i}\right)$ is

$$
f\left(y_{i} \mid x_{i} ; \beta, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{1}{2} \frac{\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)^{2}}{\sigma^{2}}\right]
$$

(a) Give an expression for the \log-likelihood contribution of observation $i, \log L_{i}\left(\beta, \sigma^{2}\right)$. Explain why the likelihood function of the entire sample is given by

$$
\log L\left(\beta, \sigma^{2}\right)=\sum_{i=1}^{N} \log L_{i}\left(\beta, \sigma^{2}\right)
$$

Tips: The definition of independence (see e.g. B. 4 in the textbook) will be helpful. Recall the basic properties of the logarithm (can you write $\log (a \times b)$ as a sum?).
(b) Determine the expressions for the two elements in $\partial \log L_{i}\left(\beta, \sigma^{2}\right) / \partial \beta$, where $\beta=$ $\left(\beta_{1}, \beta_{2}\right)^{\prime}$, and show that both have expectation zero for the true parameter values.

Tips: Note that (differentiable) functions of several variables can simply be differentiated component-wise. After differentiation, solve for ε_{i} from the model. Use the expectation of ε_{i}, and independence and its implications for expectations.
(c) Derive an expression for $\partial \log L_{i}\left(\beta, \sigma^{2}\right) / \partial \sigma^{2}$ and show that it also has expectation zero for the true parameter values.

```
Tips: As with (b).
```

(d) Show that $\partial^{2} \log L_{i}\left(\beta, \sigma^{2}\right) / \partial \beta \partial \sigma^{2}=\partial^{2} \log L_{i}\left(\beta, \sigma^{2}\right) / \partial \sigma^{2} \partial \beta$, and show that it has expectation zero. What are the implications of this for the asymptotic covariance matrix of the ML estimator $\left(\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\sigma}^{2}\right)^{\prime}$?

Tips: it may be useful to express both the partial derivatives in b) in matrix form. You can refer to the Schwarz-Clairaut theorem (differentiation order does not matter $\mathrm{D}_{x_{1}} \mathrm{D}_{x_{2}} f=$ $\left.\mathrm{D}_{x_{2}} \mathrm{D}_{x_{1}} f\right)$ if you don't want to differentiate the same things twice. Textbook pp. 192-193 and slide 7 in slides "Maximum likelihood estimation" will be helpful for the asymptotic properties.
(e) Present two ways to estimate the asymptotic covariance matrix of $\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)^{\prime}$ and compare the two covariance matrix estimators.

Tips: read either the slides on "Maximum likelihood estimation" or the book chapter 6.1.2 carefully. For the comparison, consider whether there any similarities and differences between the estimators, either in limited samples or asymptotically.
2. (Verbeek, Exercise 6.1d) Consider the following linear regression model

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+\varepsilon_{i} .
$$

We have sample of N independent observations, and assume that the error term $\varepsilon_{i} \sim$ $N I D\left(0, \sigma^{2}\right)$ and independent of all x_{i}. Suppose x_{i} is a dummy variable equal to 1 for the first N_{1} observations and equal to 0 for $i=N_{1}+1, \ldots, N$. Derive the first-order conditions for the ML estimator. Show that the maximum likelihood estimators of β_{1} and β_{2} are

$$
\hat{\beta}_{1}=\frac{1}{N-N_{1}} \sum_{i=N_{1}+1}^{N} y_{i} \text { and } \hat{\beta}_{2}=\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} y_{i}-\hat{\beta}_{1},
$$

respectively. What is the interpretation of these two estimators? What is the interpretation of the true parameter values β_{1} and β_{2} ?

Tips: you may find it useful to think about what is the sum of dummies over N observations. For interpretation of the values, it may be useful to think about conditional expectations, and how we interpret a dummy variable's coefficient in a regression setting.
3. Consider maximum likelihood estimation of the linear regression model

$$
y_{i}=x_{i}^{\prime} \beta+\varepsilon_{i},
$$

where $\varepsilon_{i} \sim N I D\left(0, \sigma^{2}\right)$, discussed in the video lecture.
(a) Show that

$$
s_{i}\left(\beta, \sigma^{2}\right)=\binom{\frac{\partial \log L_{i}\left(\beta, \sigma^{2}\right)}{\partial \beta}}{\frac{\partial \log L_{i}\left(\beta, \sigma^{2}\right)}{\partial \sigma^{2}}}=\binom{\frac{\varepsilon_{i} x_{i}}{\sigma^{2}}}{-\frac{1}{2 \sigma^{2}}+\frac{1}{2} \frac{\varepsilon_{i}^{2}}{\sigma^{4}}} .
$$

Tips: For the definition of the score vector (the gradient of the log-likelihood function), see slide 7 on "Maximum likelihood estimation" or chapter 6.1.2 in the textbook.

Recall that for each observation i, x_{i} is typically a vector of regressors (not a scalar).
(b) Show that

$$
s_{i}\left(\beta, \sigma^{2}\right) s_{i}\left(\beta, \sigma^{2}\right)^{\prime}=\left(\begin{array}{cc}
\frac{\varepsilon_{i}^{2} x_{i} x_{i}^{\prime}}{\sigma^{4}} & -\frac{\varepsilon_{i} x_{i}^{\prime}}{2 \sigma^{4}}+\frac{\varepsilon_{i}^{3} x_{i}}{2 \sigma^{6}} \\
-\frac{\varepsilon_{i} x_{i}^{\sigma^{4}}}{2 \sigma^{4}}+\frac{\varepsilon_{i}^{3} x_{i}^{\prime}}{2 \sigma^{6}} & \frac{1}{4 \sigma^{4}}-\frac{2 \varepsilon_{i}^{2}}{4 \sigma^{6}}+\frac{\varepsilon_{i}^{4}}{4 \sigma^{8}}
\end{array}\right) .
$$

Tips: Can you get the results through a straightforward matrix multiplication?
(c) Show that conditional on x_{i}

$$
I_{i}\left(\beta, \sigma^{2}\right)=E\left[s_{i}\left(\beta, \sigma^{2}\right) s_{i}\left(\beta, \sigma^{2}\right)^{\prime}\right]=\left(\begin{array}{cc}
\frac{1}{\sigma^{2}} x_{i} x_{i}^{\prime} & 0 \\
0 & \frac{1}{2 \sigma^{4}}
\end{array}\right) .
$$

Tips: Expectation and variance of ε_{i}, plus independence.
4. Consider the simple linear regression model

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+\varepsilon_{i}
$$

Let z_{i} be an independently normally distributed random variable with mean zero and variance unity $\left(z_{i} \sim N I D(0,1)\right)$, while $x_{i}=\delta z_{i}+\eta_{i}$, where $\eta_{i} \sim N I D(0,1)$. Moreover, the error term $\varepsilon_{i}=\rho \eta_{i}$.
(a) Show that $\operatorname{cov}\left(x_{i}, \varepsilon_{i}\right)=\rho$. Under which conditions is the regressor x_{i} endogenous?

Tips: definition of x_{i}, independence and the expectation and second moment of ε_{i}.
(b) Show that $\operatorname{cov}\left(z_{i} \cdot \varepsilon_{i}\right)=0$ and $\operatorname{cov}\left(z_{i}, x_{i}\right)=\delta$. Under which conditions is z_{i} a valid instrument for x_{i} ?

Tips: independence and its implications for expectations.
(c) Let $\beta_{1}=0.0, \beta_{2}=1.0$ and $\rho=0.99$. Consider for four values of $\delta, \delta=0, \delta=0.1$, $\delta=0.5$ and $\delta=1.0$. For each δ, generate $S=1000$ samples of size $N=100$ from the regression model, and for each generated sample, compute the IV estimate of β_{2} and the t-test statistic for $H_{0}: \beta_{2}=1.0$ against $H_{1}: \beta_{2} \neq 1.0$.
Because 1.0 is the true value of β_{2}, H_{0} should be rejected in 5% of the replications in the t-test conducted at the 5% level of significance (the nominal size of the test). Compute the rejection rate of the test, i.e., find the proportion of the replications where the absolute value of the t-test statistic exceeds the critical value (1.96). How does the rejection rate and the distribution of the estimator vary with δ ? [Hint: If the model is estimated using the ivreg() function of the ivreg package in R and the result is stored in iv1, the IV estimate of β_{2} is obtained as coef(iv1) [2] and the covariance matrix estimator of the OLS estimator as vcov(iv1).]
(d) According to the rule of thumb discussed in the video lecture, a weak instrument problem is unlikely if the first-stage F-statistic of the test of the significance of the coefficient of z_{i} exceeds 10 in the linear regression of x_{i} on a constant and z_{i}. Repeat (c), but compute the proportion of replications where the rule of thumb suggests that z_{i} is a weak instrument for x_{i}. How well does the rule of thumb seem to work in detecting the weak instrument problem according to you simulations? [Hint: If the model is estimated using the ivreg() function of the ivreg package in R and the result is stored in iv1, the first-stage F-statistic is obtained as summary(iv1)\$diagnostics [7].]
(e) Repeat (c) in the case of two instruments: $z_{i 1} \sim \operatorname{NID}(0,1), z_{i 2} \sim N I D(0,1)$, and $x_{i}=\delta z_{i 1}+0 \cdot z_{i 2}+\eta_{i}$. Compare the results to those obtained in (c) with one instrument.
(f) Repeat (e), but instead of the t-test, assess the performance of the test of overidentifying restrictions. In other words, compute the proportion of the replications where the p-value of the test of over-identifying restrictions does not exceed 5%. [Hint: If the model is estimated using the ivreg() function of the ivreg package in R and the result is stored in iv1, summary(iv1)\$diagnostics [12] gives the p-value of the test of over-identifying restricions.]

