
ECOM-G314 Econometrics 1
Homework Assignment 4

This homework assignment will be discussed in the exercise session on Wednesday 13 Decem-
ber (groups at 10.15am and 12.15pm) in seminar room 3–4 at Economicum. Please submit
your solution by 9.45 a.m. on Wednesday 13 December.

Peer review and self-assessment should be done by Friday 15 December at 6 p.m. at
the latest. Please note that the peer review and self-assessment are compulsory, and a
prerequisite for gaining points from your submission. Kindly also note that the peer review
is earlier than usual, on Friday instead of Monday.

The last regular tutorial will be held on Monday 4 December at 2.15pm in the Economicum
lecture hall. There is also an extra tutorial session on Friday 8 December at 2.15pm in
seminar room 3–4 at Economicum. You can ask the TA for help with the the homework
assignments and discuss the assignments with other students. If you have any questions,
please contact the TA via email at heikki.korpela@helsinki.fi.

The share of each exercise of the maximum number of points from the assignment is given
in brackets.

Please return your submission in Moodle as one PDF file. It is not strictly necessary to
return the code used, but if there are errors in your results, the code may be helpful in
deciding whether you’ve made a fundamental or a minor mistake.

The peer review is anonymous. For this reason, please do not include your name or student
ID in your submission, in the filename or the file description.

1. (Adapted from Verbeek, Exercise 6.1) Consider the following linear regression model [35%]

yi = β1 + β2xi + εi.

We have sample of N independent observations, and assume that the error term εi ∼
NID(0, σ2) and independent of all xi. The density function of yi (given xi) is

f(yi|xi; β, σ
2) =

1√
2πσ2

exp

[
−1

2

(yi − β1 − β2xi)
2

σ2

]
(a) Give an expression for the log-likelihood contribution of observation i, logLi(β, σ

2).
Explain why the likelihood function of the entire sample is given by

logL(β, σ2) =
N∑
i=1

logLi(β, σ
2).

Tips: The definition of independence (see e.g. B.4 in the textbook) will be helpful. Recall

the basic properties of the logarithm (can you write log(a× b) as a sum?).

(b) Determine the expressions for the two elements in ∂ logLi(β, σ
2)/∂β, where β =

(β1, β2)
′, and show that both have expectation zero for the true parameter values.

1

mailto:heikki.korpela@helsinki.fi
https://moodle.helsinki.fi/mod/workshop/view.php?id=3360732
https://helka.helsinki.fi/permalink/358UOH_INST/1rnip4l/alma9930875093506253


Tips: Note that (differentiable) functions of several variables can simply be differentiated

component-wise. After differentiation, solve for εi from the model. Use the expectation of

εi, and independence and its implications for expectations.

(c) Derive an expression for ∂ logLi(β, σ
2)/∂σ2 and show that it also has expectation

zero for the true parameter values.

Tips: As with (b).

(d) Show that ∂2 logLi(β, σ
2)/∂β∂σ2 = ∂2 logLi(β, σ

2)/∂σ2∂β, and show that it has
expectation zero. What are the implications of this for the asymptotic covariance
matrix of the ML estimator (β̂1, β̂2, σ̂

2)′?

Tips: it may be useful to express both the partial derivatives in b) in matrix form. You can

refer to the Schwarz-Clairaut theorem (differentiation order does not matter Dx1
Dx2

f =

Dx2Dx1f) if you don’t want to differentiate the same things twice. Textbook pp. 192–193

and slide 7 in slides ”Maximum likelihood estimation” will be helpful for the asymptotic

properties.

(e) Present two ways to estimate the asymptotic covariance matrix of (β̂1, β̂2)
′ and

compare the two covariance matrix estimators.

Tips: read either the slides on ”Maximum likelihood estimation” or the book chapter 6.1.2

carefully. For the comparison, consider whether there any similarities and differences be-

tween the estimators, either in limited samples or asymptotically.

2. (Verbeek, Exercise 6.1d) Consider the following linear regression model [15%]

yi = β1 + β2xi + εi.

We have sample of N independent observations, and assume that the error term εi ∼
NID(0, σ2) and independent of all xi. Suppose xi is a dummy variable equal to 1 for
the first N1 observations and equal to 0 for i = N1 + 1, . . . , N . Derive the first-order
conditions for the ML estimator. Show that the maximum likelihood estimators of β1

and β2 are

β̂1 =
1

N −N1

N∑
i=N1+1

yi and β̂2 =
1

N1

N1∑
i=1

yi − β̂1,

respectively. What is the interpretation of these two estimators? What is the inter-
pretation of the true parameter values β1 and β2?

Tips: you may find it useful to think about what is the sum of dummies over N observations. For

interpretation of the values, it may be useful to think about conditional expectations, and how

we interpret a dummy variable’s coefficient in a regression setting.
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3. Consider maximum likelihood estimation of the linear regression model [20%]

yi = x′
iβ + εi,

where εi ∼ NID(0, σ2), discussed in the video lecture.

(a) Show that

si(β, σ
2) =

(
∂ logLi(β,σ

2)
∂β

∂ logLi(β,σ
2)

∂σ2

)
=

( εixi

σ2

− 1
2σ2 +

1
2

ε2i
σ4

)
.

Tips: For the definition of the score vector (the gradient of the log-likelihood function), see
slide 7 on ”Maximum likelihood estimation” or chapter 6.1.2 in the textbook.

Recall that for each observation i, xi is typically a vector of regressors (not a scalar).

(b) Show that

si(β, σ
2)si(β, σ

2)′ =

(
ε2i xix

′
i

σ4 − εix
′
i

2σ4 +
ε3i xi

2σ6

− εix
′
i

2σ4 +
ε3i x

′
i

2σ6
1

4σ4 − 2ε2i
4σ6 +

ε4i
4σ8

)
.

Tips: Can you get the results through a straightforward matrix multiplication?

(c) Show that conditional on xi

Ii(β, σ
2) = E[si(β, σ

2)si(β, σ
2)′] =

(
1
σ2xix

′
i 0

0 1
2σ4

)
.

Tips: Expectation and variance of εi, plus independence.

4. Consider the simple linear regression model [30%]

yi = β1 + β2xi + εi

Let zi be an independently normally distributed random variable with mean zero and
variance unity (zi ∼ NID(0, 1)), while xi = δzi+ ηi, where ηi ∼ NID(0, 1). Moreover,
the error term εi = ρηi.

(a) Show that cov(xi, εi) = ρ. Under which conditions is the regressor xi endogenous?

Tips: definition of xi, independence and the expectation and second moment of εi.

(b) Show that cov(zi.εi) = 0 and cov(zi, xi) = δ. Under which conditions is zi a valid
instrument for xi?

Tips: independence and its implications for expectations.
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(c) Let β1 = 0.0, β2 = 1.0 and ρ = 0.99. Consider for four values of δ, δ = 0, δ = 0.1,
δ = 0.5 and δ = 1.0. For each δ, generate S = 1000 samples of size N = 100 from
the regression model, and for each generated sample, compute the IV estimate of
β2 and the t-test statistic for H0 : β2 = 1.0 against H1 : β2 ̸= 1.0.

Because 1.0 is the true value of β2, H0 should be rejected in 5% of the replications
in the t-test conducted at the 5% level of significance (the nominal size of the
test). Compute the rejection rate of the test, i.e., find the proportion of the
replications where the absolute value of the t-test statistic exceeds the critical
value (1.96). How does the rejection rate and the distribution of the estimator
vary with δ? [Hint: If the model is estimated using the ivreg() function of
the ivreg package in R and the result is stored in iv1, the IV estimate of β2

is obtained as coef(iv1)[2] and the covariance matrix estimator of the OLS
estimator as vcov(iv1).]

(d) According to the rule of thumb discussed in the video lecture, a weak instrument
problem is unlikely if the first-stage F -statistic of the test of the significance of
the coefficient of zi exceeds 10 in the linear regression of xi on a constant and zi.
Repeat (c), but compute the proportion of replications where the rule of thumb
suggests that zi is a weak instrument for xi. How well does the rule of thumb seem
to work in detecting the weak instrument problem according to you simulations?
[Hint: If the model is estimated using the ivreg() function of the ivreg package
in R and the result is stored in iv1, the first-stage F -statistic is obtained as
summary(iv1)$diagnostics[7].]

(e) Repeat (c) in the case of two instruments: zi1 ∼ NID(0, 1), zi2 ∼ NID(0, 1), and
xi = δzi1 + 0 · zi2 + ηi. Compare the results to those obtained in (c) with one
instrument.

(f) Repeat (e), but instead of the t-test, assess the performance of the test of over-
identifying restrictions. In other words, compute the proportion of the replications
where the p-value of the test of over-identifying restrictions does not exceed 5%.
[Hint: If the model is estimated using the ivreg() function of the ivreg package
in R and the result is stored in iv1, summary(iv1)$diagnostics[12] gives the
p-value of the test of over-identifying restricions.]
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